第一百八十一章 真阐子的寻根之旅(1 / 2)

希尔伯特二十三个问题当中的第一问,连续统基数问题。

连续统问题,即“在可数集基数和实数集基数之间没有别的基数”的问题。

所谓“基数”,便是指集合的“绝对测度”。一个集合里面有一个元素,那么这个集合的基数性就是一,有两个元素,基数性就是二。以此类推。

而“所有整数”“所有自然数”这种无限可数集合,其基数性,就记做“阿列夫零”——神州称之为“道元零数”,最小的无限整数。

神州的古人曾经认为,数字的总数、无限的大就是道的数字。

阿列夫零加一还是阿列夫零。阿列夫零加阿列夫零还是阿列夫零。阿列夫零乘以阿列夫零还是阿列夫零。

无限大、正无穷。普通的操作方式对於这个数字完全没有意义。

那么,世界上还有比这个无限大的数字更大的数码?

实际上是有的。

那就是“幂集”的基数。

如果一个集合有“1”这一个元素,那么它的幂集就有两个——“1”还有空集?。

如果一个集合有“1,2”两个元素,那么它就有四个幂集——空集?,集合{1},集合{2},集合{1,2}。

以此类推,当一个集合有三个元素,那么它就有八个幂集。当集合元素增加道了四个的时候。幂集就增加到了十六个。

一个集合的幂集,永远比这个集合的元素要多。如果一个集合有N个元素,那么它就有2的N次方个幂集。

无限可数集合的幂集,二的阿列夫零次方,就是人类发现的第二个无限大的数字——贝司一。

而这个“beth1”除了是整数集的幂集之外。还是所有实数集合的基数。

而连续统问题,也可以概括为“阿列夫零和贝司一之间,究竟存不存在另一个基数?”。

有没有一个集合的基数,明确的大於一个无限大,小於另一个无限大?

这就是二十三问当中的第一问。

二十三问当中,第二问、第十问是关系到算学根基的,被认为是极端重要的。也正是因为算主那“完备性、一致性、可判定性”的思想。所以这两问素来被相提并论。但从“提问者”的思路来说。第一问和第二问的关系,反而更为紧密。第一问和第二问,连续统和完备性,根基上是相连的。

第一问的问题引导出了第二问的问题,第二问的解答启发了第十问的解答。

这几个问题,可以看做是一个体系。

当然,希门二十三问当中的每一问。都或多或少的与其他二十三当中的问题相关联,整个二十三问,隐隐是一个整体。而这一个整体,涵盖的算学的绝大部分方面,一题解出,算学整体就会展现出一个巨大的进步。而每一个算家的研究,或多或少都与二十三问当中的某一问相关。

从来就没有算家能够做到这一点,从前没有,以后也不大可能会有。对於算学的历史来说,二十三问是一个及其壮阔的飞跃。

而王崎也正是看中了这一点。他已经解决了第二问、第十问。现在抛出第一问的解。实际上也不是什么特别惊世骇俗的事情。

另外,连续统假设和完备性证明、可判定性证明差不多,都是那种拥有极端重要地位,但是本身相对独立的那一种。它们就像是一片多米诺骨牌的第一块,本身并不如何,但只要倒下就会引发连锁反应。

想要解决这些问题,没并不需要多么深厚的积累。这些都问题都很偏重“巧思”。

在地球。第二问、第十问的解答者都是相当年轻的天才学者。而第一问的解答者,甚至严格上来说并不懂得数学逻辑——P.J.科恩的专业领域是分析,他只不过是被这一个问题所吸引了,仅此而已。

第一问的解答者P.J.科恩本人甚至不能理解自己发明的证明法在逻辑领域的应用。

也就是说,这一项成果,同样可以推到“天才灵感的闪现”当中去。

不过,最大的问题是……

“我上辈子好像没有特别去将这个玩意背下来啊……”王崎又觉得有些头疼了。